DIAGDATA: A TOOL FOR GENERATION OF FUZZY INFERENCE SYSTEM

SILVIA MARIA FONSECA SILVEIRA MASSRUAH, RAPHAEL FUINI RICCIOTI, HELANO PÓVOAS LIMA, CARLOS ALBERTO ALVES MEIRA

1 Embrapa Agriculture Informatics, Caixa Postal 6041, Campinas, SP, Brazil, silvia@cnptia.embrapa.br
2 Student of Computer Engineering, Puccamp, Campinas, SP, Brazil, raphael@cnptia.embrapa.br
3 Embrapa Agriculture Informatics, Caixa Postal 6041, Campinas, SP, Brazil, helano@cnptia.embrapa.br.
4 Embrapa Agriculture Informatics, Caixa Postal 6041, Campinas, SP, Brazil, carlos@cnptia.embrapa.br.

ABSTRACT In this paper is described the architecture of a tool called DiagData. This tool aims to use a large amount of data and information in the field of plant disease diagnostic to generate a disease predictive system. In this approach, techniques of data mining are used to extract knowledge from existing data. The data is extracted in the form of rules that are used in the development of a predictive intelligent system. Currently, the specification of these rules is built by an expert or data mining. When data mining on a large database is used, the number of generated rules is very complex. The main goal of this work is to minimize the rule generation time. The proposed tool, called DiagData, extracts knowledge automatically or semi-automatically from a database and uses it to build an intelligent system for disease prediction. In this work, the decision tree learning algorithm was used to generate the rules. A toolbox called Fuzzygen was used to generate a prediction system from rules generated by decision tree algorithm. The language used to implement this software was Java. The validation process involved measurements and comparisons of the time spent to enter the rules by an expert with the time used to insert the same rules with the proposed tool. Thus, the tool was successfully validated, providing a reduction of time.

Keywords: prediction, data mining, decision tree, machine learning, fuzzy inference system, Fuzzygen.

INTRODUCTION

Nowadays, the phytopathologies have generated a large amount of data and information in the field of the plant disease diagnosis and control resulting from their experiments and publications. The challenge in this work is to use these data and information to extract knowledge so that it can predict the onset of a disease and prevent its spread. The traditional methods of data analysis usually perform queries using SQL language (SQL - Structured Query Language), OLAP tools (On-line Analytical Processing) and data visualization tools. However, the tools often fail to answer more complex questions involving all possible relationships and associations that exist in a large amount of data.
Therefore, it is necessary to use techniques of data analysis supported by computer, allowing the self-extracting (or semi-automatic) of new knowledge from a large data repository. This field of research is called Knowledge Discovery from Database (KDD) and Data mining (DM). This process of extracting knowledge of the database is aimed at finding knowledge from one set of data to be used in decision-making. This area of research is multidisciplinary and incorporates techniques used in various areas such as Database, Artificial Intelligence and Statistics. The techniques used in MD should not be viewed as a substitute for other forms of data analysis, but rather as complementary tools to improve the results of the explorations made (Han and Kamber, 2003).

Embrapa has generated a large amount of data about plant diseases. For instance, there are many books, papers and reports published for diagnosis and control of plant diseases. These texts were written by experts in phytopathology to be used by farmers or extension technicians for diagnosis of plant diseases. However, if the information is not available at hand farmers can use wrong dosages or chemical products to fight a disease and that may put in risk consumers' health and cause damages to the ecosystem. In this case, diagnostic expert systems can be an alternative tool to help the experts in decision-making concerning the identification of diseases and control methods (Massruhá et al, 2007).

The reliability of a diagnostic expert system depends on the quantity and quality of knowledge that it handles, i.e., the number of diseases it can diagnose and the appropriate knowledge representation constructed by the domain expert. This can be achieved by the knowledge engineer with a knowledge acquisition procedure. However, the knowledge acquisition process is the bottleneck in the development of any expert system (Massruhá, et al 2007).

In the diagnosis domain, the task performed by the expert can be thought of as a classification process, in which diseases are assigned to classes or categories determined by their properties. In a classification model, the connection between classes and properties can either be defined by something simple, such as a flow-chart, or complex such as the executable models represented by computer programs. In the latter, the classification models can be built in two ways: (a) by interviewing the relevant experts of the domain; and (b) by constructing inductively, through the generalization from specific examples contained in numerous recorded classifications.

The first approach was adopted in the development of a preliminary version of an expert system for diagnosis of corn diseases on the web (Massruhá et al, 1999). In that system, we generated decision trees from the interviews with domain experts and resources from the literature in the corn diseases area. After doing so, we built an expert system whose inference flows from the consequences (symptoms) to the causes (diseases) (Massruhá et al, 2007).

In this paper, we show how the second approach (data mining techniques) can be used during the acquisition process. To do so, we developed a tool to extract knowledge from structured data. This tool, called DiagData, aims to help the process of extraction of information from database by identifying groups of similar data in such a way that rules can be inducted and an inference system generated.
The paper is organized as follows. Section 2 describes some concepts of the data mining and uncertain reasoning in an integrated approach. Section 3 presents the DiagData architecture. Finally, Section 4 brings the results obtained so far as well as future work in our research project.

AN INTEGRATED APPROACH

The data mining can be summarized as the nontrivial extraction of the implicit, previously unknown, interesting, and potentially useful information (usually in the form of knowledge patterns or models) from data. The extracted knowledge is used to describe the hidden regularity of data, to make prediction, or to aid human users in other ways. The popularity of data mining is due to demands from various real-world applications in decision-making. An important aspect for scalable data mining is through efficient algorithms. The machine learning refers artificial intelligence tasks with improved performance and these techniques can be used in data mining tasks.

Machine learning algorithms (Mitchell, 1997) have proved to be of great practical value in a variety of application domains. There are especially useful in data mining problems where large databases may contain valuable implicit regularities that can be discovered automatically (e.g., to analyse outcomes of medical treatments from patient databases or to learn general rules for credit worthiness from financial databases).

A well-known tree induction algorithm adopted from machine learning is ID3 or C4.5, proposed by Quinlan (1986, 1993), which employs a process of constructing a decision tree in a top-down approach.

According to Chen (2001), a decision tree is a hierarchical representation that can be used to determine the classification of an object by testing its values for certain properties. In a decision tree, a leaf node denotes a decision (or classification) while a non-leaf node denotes a property used for decision (color, size, etc). It is preferred the shortest path to reach leaf, because it implies the fewest possible number of questions are needed. The examples are used to guide the construction of a decision tree. The main algorithm is a recursive process. At each stage of this process, is selected a property based on the information gain calculated from the training examples. In addition, rule induction can be used in conjunction with tree induction. The rule induction can be served as a postprocessing of tree induction using ID3 or C4.5. In general, a rule can be constructed by following a particular path from root to a leaf in the decision tree, with the variables and their values involved in all the non-leaf nodes as the condition, and the classification variable as the consequence.

Decision trees have been widely used in data mining tasks. They also have been presented as a good tool to study the epidemiology of plant diseases such as described in Meira et al (2008).

The data mining tasks can be completed by uncertain reasoning techniques, such as fuzzy logic, bayesian networks, neural networks. Whereas probability theory is aimed at coping with randomness in reasoning, fuzzy logic deals with a different kind of uncertainty, namely, vagueness. Fuzzy logic, first developed by Zadeh, provides an approximate but effective means of describing the behavior of systems that are too complex, ill-defined, or not easily analyzed mathematically. Fuzzy logic is an extension of the boolean logic for handling uncertain and imprecise knowledge. Fuzzy logic uses fuzzy set theory in which
a variable is a member of one or more sets, with a specified degree of membership in a range [0,1]. Fuzzy variables are processed using a system called fuzzy inference system. It involves fuzzification, fuzzy inference and defuzzification. The fuzzification process converts a crisp input value to a fuzzy value. The fuzzy inference is responsible for drawing conclusions from the knowledge base. The defuzzification process converts the fuzzy control actions into a crisp control action. Then, fuzzy systems can provide crisp, exact control actions. A technique used in defuzzification is the centroid method.

The proposed approach was developed a tool called DiagData where the inputs are databases. Techniques of data mining such as decision tree is used to extract rules from databases. Then the rules are used to generate a fuzzy inference system in the web (Figure 1).

![Figure 1: The DiagData architecture.](image)

**THE DiagData TOOL**

The DiagData tool was developed in Java Standard Edition (JAVA SE). DiagData has 3 main modules: the decision tree builder, the fuzzy translator and the fuzzy inference system generator. The inputs of this tool are two files, an training file and other testing file and the output is a fuzzy inference system. The training and testing files are inputs of the decision tree builder. In the implementation of this module was used the J48 algorithm of the software WEKA. The J48 implements the C4.5 algorithm proposed by Quinlan. The rules generated by this module can be completed to generate the fuzzy system. The user can visualize the rules, confusion matrix, the training and testing files in the format .TXT. The rules can be visualized in the graphic format as hiperbolic tree. Afterwards, a Fuzzy Control Language (FCL) file can be used for inference. The user can access the fuzzy variables and the results of the fuzzy inference engine. In the implementation of the fuzzy inference system generator was used the FuzzyGen tool.

As Figure 2 shows, the DiagData can be divided into 4 main stages: Knowledge Extracting, fuzzy modeling, inference engine and graphic results.
1 – Knowledge Extracting

In the first phase, the training and testing files are inputs of this tool. The rules are generated from these files. It is not necessary the testing file, the rules can be generated from training file only.

The training and testing files in the .arff format are uploaded when the “Open” button is clicked in training and testing area, respectively. When the “rules extracting” Button is clicked, the system runs the J48 using the two files, training and testing. This algorithm generates the rules and confusion matrix that are saved in the two files called “regras.txt” and “confusion_matrix.txt”, respectively. In this phase, the training and testing files are saved in the “train.txt” and “test.txt”. The user can visualize all files in the format .TXT (Figure 2). The rules can also be visualized in the graphic format as hiperbolic tree (Figure 3).

Figure 2. The first form of DiagData.
2 – Fuzzy Modeling

In this phase, the fuzzy modelling is created from rules generated when the Button “Loading variables and rules”. The name of the model, the input and output variables and the rules generated from the model as shown in Figure 4.
In this phase, the user must enter fuzzy values of the variables. When the button “Add terms and variables” is clicked, the user must enter values in the form as shown in Figure 4. In the Terms form is showed a list of possible terms that can be assigned to each variable. The user must choose a term and click on "Add Value", where the values will be added to that term. The user will repeat this process until you have assigned all the terms for the variables. After the user has assigned all the values for the input and output variables, the user must click the "FCL Translator”, which will create a file FCL (Fuzzy Control Language). This file is the template that is used to enter the inference system. This tool uses a library called jFuzzyLogic, which takes as input a file with this format, as shown in Figure 5. This file is used to infer the result.
3 – Inference Engine

In this phase, the system will try to infer the result. The user by clicking on the search for the "...", generated by the previous step. This file is in the form FCL. By clicking the "Upload" button, the user uploads the entire contents of the file in the system and in the table "Upload the values of input variables ...", will see the input variables listed in the file that is uploaded. The user must enter the values of variables in the "Value" of the table "Upload the values of input variables ...", as shown in Figure 6.
Figure 6. The inference engine form.

Finished entering the values for the variables and clicking on "Inferring results" will be presented in the form at the "Results ...", as shown in Figure 7, the contents of each variable, their fuzzy values, the rules and their weights. In this phase, the system infers the outcome based on the rules generated by the step to knowledge extracting. Assigning values to which they want to input variables, using fuzzy logic system will infer a result. These results can be viewed in chart form as shown in Figure 7, the fuzzy ranges of the input and output variables and the graphics of the results inferred.
CONCLUSION

This paper presented an evaluation of the use of the DiagData to extract information from structured information using data mining techniques. Tests carried out with corn diseases showed very good results comparing the decision tree constructed by the expert, which is based on grouping of symptoms, with the similarity among tree nodes calculated from the DiagData tool. However, the DiagData tool generates a large amount of rules from model. Then, it is necessary the expert to select the main rules. This process of selection is semi-automatic because the expert has to validate these rules. After, the user has to enter the fuzzy values of the variables of selected rules. In real applications, there is very often no sharp boundary between variable ranges so that fuzzy variables is often better suited for the data. Membership degrees between zero and one are used in fuzzy variables instead of crisp assignments of the data. The DiagData allows that user validates the selected rules because it generates automatically the fuzzy inference system. Thus, the user can refine the rules and generates the system again and quickly to correct it. Note that the DiagData is a tool to help the experts build the expert system but it doesn't eliminate them. In future work, we intend insert large databases in the DiagData to verify if it can improve the results. Although the initial validation is on agriculture, DiagData
can be used in several domains, since it was developed to be independent of language and subject.

REFERENCES


