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ABSTRACT In the United States, the status of water resources is assessed regularly as 
required by the Clean Water Act. This important directive calls for the protection, 
restoration, and enhancement of “…the chemical, physical, and biological integrity of the 
Nation’s waters.” Historically, regulatory agencies responsible for assessing water 
resources have focused efforts on the chemical and biological aspects of water resource 
integrity while the physical components have received disproportionately less attention.  
This is perhaps due to inadequate and inconsistent definitions of what constitutes physical 
integrity.  Recently, definitions of water resource physical integrity have been proposed 
that focus on evaluating fluvial processes and determining whether a stream system is in 
dynamic equilibrium with the surrounding watershed.  Streams in dynamic equilibrium 
provide a wealth of ecosystem services that benefit human society - water filtration, 
nutrient assimilation, flood peak attenuation, baseflow augmentation, temperature 
moderation, maintenance of functional habitats, etc. A study was conducted at 36 sites in 
the Olentangy River Watershed in central Ohio, USA to assess the physical integrity (i.e. 
dynamic equilibrium status) of stream reaches within the drainage network.  A multi-
factor, weight-of-evidence approach utilizing knowledge of hydrology, hydraulics, stream 
geomorphology, and sediment transport was used to evaluate dynamic equilibrium in 
each stream reach.  Each site was classified as “in dynamic equilibrium” or “not in 
dynamic equilibrium” based on expert interpretation of 9 quantitative indicator variables.  
Logistic regression was used to identify significant variables which were subsequently 
used to build multi-parameter models for predicting dynamic equilibrium.  Three 
diagnostic statistics were used to guide selection of the best model.  The best model 
included two variables and correctly predicted 32 of the 36 (88.9%) sites into their 
assigned dynamic equilibrium state. 
 
Keywords: Dynamic equilibrium; Stream geomorphology; Physical integrity. 
 

INTRODUCTION Streams in dynamic equilibrium with the hydrology and sediment 
supply of their surrounding watersheds and drainage networks provide a wealth of 
ecosystem services that benefit human society.  Beneficial ecosystem services may 
include water filtration, nutrient assimilation, flood peak attenuation, baseflow 
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augmentation, temperature moderation, and maintenance of functional habitats that 
support diverse riparian and aquatic ecological communities.  In recent years there has 
been an increasing awareness amongst water resource managers and regulatory agencies 
of the role that good channel and floodplain morphology plays in protecting and 
sustaining high quality water resources.  However, assessments of stream geomorphology 
and dynamic equilibrium are much less common than water quality, biological and 
physical habitat assessments in most water resources monitoring and management 
programs.   

Graf (2001) proposes an interesting and alternative definition of physical integrity which 
he defines as “…a set of active fluvial processes and landforms wherein the channel, 
floodplains, sediments and overall spatial configuration maintain a dynamic equilibrium, 
with adjustments not exceeding limits of change defined by societal values”.    Asmus et 
al. (2009) supported this definition of physical integrity and suggested that assessments of 
stream morphology, stability, and dynamic equilibrium are needed to improve water 
quality monitoring programs and Total Maximum Daily Load (TMDL) investigations.  
Several states have started to incorporate stream geomorphology assessments into 
monitoring programs and TMDL studies and many are trying to determine the utility and 
feasibility of extending programs to regularly include geomorphology assessments. 

The objective of this study was to perform comprehensive stream geomorphology 
assessments in the Olentangy River Watershed and use the data to develop a predictive 
equation for evaluating stream dynamic equilibrium in the watershed.  A primary goal 
was to determine whether a parsimonious set of indicator variables could be used to 
reliably predict whether or not a stream was in dynamic equilibrium.  This study focused 
on the development of quantitative indicator variables of dynamic equilibrium as other 
studies (Doyle et al., 2000) have shown that quantitative indicators were better able to 
distinguish between stable and unstable sites when compared to qualitative methods.       

1.0 Methodology 
1.1 Study Watershed 
The Olentangy River Watershed is located in central and north-central Ohio, USA and 
flows from north to south draining approximately 1400-km2

 

 at its confluence with the 
Scioto River in Columbus, OH.  The main stem of the Olentangy River is approximately 
142-km long with an average slope of 0.1% over its entire course.  Most tributary streams 
in the watershed have bed slopes less than 0.5%.  Average precipitation in the watershed 
ranges from approximately 940-mm to 990-mm annually.  The watershed supports 
multiple land uses dominated by agricultural production on clay-rich soils with low relief 
in the upper watershed, a mixture of agricultural and forest lands on gently rolling 
topography in the middle reaches, and urban and residential land uses with variable 
topography in the lower third of the watershed.  In total, 36 sites in the Olentangy River 
Watershed were evaluated (Figure 1).  Images of several sites are provided in Figure 2. 

1.2 Field Surveys of Stream Morphology 
At each study site, a reach geomorphology survey was conducted to obtain information 
on channel materials, dimension, pattern, and profile. Survey procedures were generally 
consistent with guidelines presented by Harrelson et al. (1994). Surveys were conducted 
with a laser level transmitter, 30-meter measuring tapes, and a telescoping rod with a 
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laser receiver. This approach was only used in wadeable streams and was typically 
performed by a team of three or four people.  
 
 

 
 

Figure 1: A map of study sites and streams in the Olentangy River Watershed. 
 

 
Figure 2: Several study sites. A) A wooded stream in dynamic equilibrium. B) An incised stream not 

in equilibrium. C) An incised agricultural ditch. 
 
Where possible, a reach survey was conducted over a stream length equal to at least 20 
bankfull channel widths, which generally encompassed at least two meander bends. 
Occasionally, it was only possible to survey a single meander bend. Features that were 
surveyed included: channel cross-sections, bed profile along the thalweg, water surface 
profile, azimuths of the banks between bed features, the bankfull discharge elevation at 
points along the reach where it was easily identified, the top of the bank, and the 
floodplain. Each survey included a minimum of one representative cross-section with 
distinct bankfull features in a riffle cross-section.  In addition, Wolman pebble counts 
were conducted in riffle cross-sections in order to determine the particle size distribution 
of substrate materials on the streambed. 
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1.3 Evaluation of Field Identified Bankfull Features 
A weight of evidence approach was used to confirm or make adjustments to the field 
identified bankfull features at each study site.  The approach utilizes knowledge of fluvial 
geomorphology, watershed hydrology, channel hydraulics, and sediment transport 
relationships to: 1) assess the recurrence interval of the estimated bankfull discharge at 
each site compared to regional values of channel forming discharge recurrence intervals, 
2) compare measured bankfull channel dimensions to predicted bankfull dimensions from 
regional hydraulic geometry relationships, and 3) compare measured mean bed material 
particle size to a theoretical estimate of the mean bed material size at the threshold of 
motion.  Evaluations were conducted using the STREAM modules (Mecklenburg and 
Ward, 2004).  

1.4 Dynamic Equilibrium Indicator Variables 
A suite of indicator variables was developed to quantify various aspects of channel 
morphology that could be related to dynamic equilibrium at each study site.  The 
indicator variables used include: 1) bankfull dimension deviation values, 2) a bankfull 
width to depth ratio deviation value, 3) flooded width ratios, 4), stage ratios, and 5) a bed 
material size deviation value.   

1.4.1 Bankfull Dimension Deviation Values 
Bankfull dimension deviation values were developed to evaluate the measured bankfull 
channel dimensions relative to bankfull dimensions predicted from an established 
regional hydraulic geometry relationship for the Olentangy River Watershed (Witter, 
2006).  Sites with measured bankfull dimensions that deviate little from bankfull 
dimensions predicted by the regional hydraulic geometry relationships are more likely to 
be in dynamic equilibrium than those sites that deviate substantially; however, it should 
be noted that bankfull dimensions of sites with similar drainage areas within a watershed 
may be quite different depending on local conditions such as geology, topography, and 
riparian vegetation.  The following values were estimated at each site:     

   1  MEAS
dev

RHG

CSACSA
CSA

= −                                                                                                  (1) 

   1-  MEAS
dev

RHG

WW
W

=                                                                                                           (2) 

   1-  MEAS
dev

RHG

DD
D

=                                                                                                           (3) 

where CSAdev, Wdev, and Ddev are the cross sectional area, width, and average depth 
deviation values; CSAMEAS, WMEAS, and DMEAS are the measured bankfull cross sectional 
area, width, and average depth at a site; and, CSARHG, WRHG, and DRHG are the bankfull 
cross sectional area, width, and average depth predicted by a regional hydraulic geometry 
relationship.  When the bankfull dimensions are in close agreement with the regional 
hydraulic geometry estimates then the bankfull dimension deviation values will approach 
0.  As the measured dimensions deviate (either smaller or larger) from the predicted 
bankfull dimensions the deviation value will increase.   



CIGR XVIIth World Congress – Québec City, Canada – June 13-17, 2010 5 

1.4.2 Bankfull Width to Depth Ratio Deviation Value 
Similar to the bankfull dimension deviation values described previously the bankfull 
width to depth ratio deviation value expresses the difference between the measured 
bankfull width to depth ratio relative to the width to depth ratio predicted from regional 
hydraulic geometry relationships.  The width to depth ratio deviation value (WDRdev) is: 

 1 -  MEAS
dev

RHG

WDRWDR
WDR

=                                                                                            (4) 

where WDRMEAS is the measured bankfull width to depth ratio and WDRRHG is the width 
to depth ratio predicted from regional hydraulic geometry relationships.  Rosgen (1996) 
has shown that certain ranges of channel width to depth ratios are associated with streams 
with stable morphology.  Streams with excessively high bankfull channel width to depth 
ratios are often impacted by streambank erosion or excessive deposition.   

1.4.3 Flooded Width Ratios 
Flooded width ratios express the relationship between the width of the water surface at a 
particular stage (i.e. elevation) relative to the flooded width at the bankfull stage.  
Flooded width ratios are an indicator of how often and extensively discharges above the 
bankfull discharge stage access a floodplain.  Streams with broad, floodplains are able to 
reduce flow velocity and dissipate the energy of larger flows which helps maintain 
dynamic equilibrium. In this study the flooded width ratios for the 50 and 1.6-year 
recurrence interval flooded widths relative to the flooded width of the bankfull channel 
were evaluated.  The 1.6-year event was selected because it is an event slightly larger 
than the recurrence interval typically associated with the bankfull discharge in this 
watershed (Witter, 2006).  The 50-year event was selected to represent a more infrequent 
condition with larger, potentially erosive conditions.  An example of 50-year flooded 
width and the bankfull flooded width is provided in Figure 3.   

To determine the flooded width at a site the USGS Rural Regression Equations for Ohio 
were used to estimate discharge at each site for several recurrence interval events.  The 
STREAM modules were then used to determine the flooded width at a site for each 
corresponding discharge rate.  The flooded width values were then used to calculate the 
flooded width ratios.  The generic form of the flooded width ratio (FWRx:BKF) equation is: 

:
x

x BKF
BKF

FWFWR
FW

=                                                                                                            (5) 

where FWx is the predicted flooded width at recurrence interval x where x is the 50 or 1.6-
year recurrence interval event.  FWRBKF is the flooded width at the bankfull elevation.   

1.4.4 Stage Ratios 
Stage ratios were developed as an indicator of the degree of vertical connectivity between 
the main channel and floodplain.  Similar to the flooded width ratios the stage ratios at 
the 50 and 1.6-year recurrence interval events relative to the bankfull stage were 
evaluated.  Streams that are incised and cannot regularly access a broad floodplain to 
dissipate high energy flows will have large stage ratios.  In incised stream systems a 
small increase in discharge will result in a large increase in stage whereas streams with 
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well-attached, broad floodplains can have large increases in discharge resulting in only a 
small increase in stage.  Streams with low stage ratios generally access their floodplain 
more often to dissipate the energy of flood flows and are better able to maintain dynamic 
equilibrium. Examples of stages at the 50-year recurrence interval discharge and at the 
bankfull discharge are presented in Figure 3.  The generic form of the stage ratio 
(SRx:BKF) equation is: 

:
x

x BKF
BKF

SSR
S

=                                                                                                                   (6) 

where Sx is the predicted stage at a discharge of recurrence interval x where x is the 50 or 
1.6-year recurrence interval event.  SBKF is the stage at the bankfull discharge.   
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Figure 3: Examples of flooded width and stage ratios at the 50-year recurrence interval discharge 
and bankfull discharge.  A generic form of the relationships is provided in Equation 5 and 6.  

1.4.5 Bed Material Size Deviation Value 
The mean bed material size deviation (MBMSdev) value provides for a comparison of the 
measured mean bed material size (MBMSMEAS) at a site to the predicted mean bed 
material size at the threshold of motion (MBMSTOM).  Similar to the bankfull dimension 
deviation values, MBMSdev
 

 is expressed as an absolute deviation from unity: 

1 MEAS
dev

TOM

MBMSMBMS
MBMS

= −                                                                                               (7) 

 
MBMSMEAS was determined by field measurements in riffle features using the Wolman 
Pebble Count method.  MBMSTOM
 

 was estimated using Shields equation (Shields, 1936): 

( )( )1000 0.06TOM
s

MBMS
g

τ
ρ ρ

=
−

                                                                                  (8)                                                                     

 
where τ is shear stress (newtons/m2), 1000 is a conversion constant, 0.06 is the Shields 
parameter selected for this study, ρs is the density of sediment (2560-kg/m3), ρ is the 
density of water (1000-kg/m3), and g is the gravitational constant (9.81-m/sec2

 

).  Shear 
stress (τ) is calculated as: 

Rsτ γ=                                                                                                                              (9) 
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where γ is the specific weight of water (1000-kg/m3 
* 9.81-m/sec2), R is the hydraulic 

radius of the bankfull channel (m), and s is slope (m/m).  Streams with similar 
MBMSMEAS values compared to MBMSTOM predicted using Shield’s equation evaluated at 
the bankfull elevation are more likely to be in equilibrium (Ward and Trimble, 2004).  
Streams with MBMSMEAS finer than expected are generally aggrading and streams with 
MBMSMEAS larger than predicted are typically incised or degrading.  MBMSdev values 
closer to 0 are more likely to be in dynamic equilibrium than streams whose MBMSdev

 

 
values deviate appreciably from 0.  

1.5 Statistical Methods and Diagnostics 
Each study site was categorized as “in dynamic equilibrium” or “not in dynamic 
equilibrium” based on the results of the weight of evidence evaluation and the 
professional judgment of the authors.  Logistic regression was then used to generate a 
series of nine 1-parameter models to determine which variables best predicted dynamic 
equilibrium state.  Variables that were significant (p<0.05) in the initial series of logistic 
regression models were retained and used to generate multi-parameter models.  Each of 
the one and multi-parameter models developed was assessed using Mallow’s Cp, 
Akaike’s Information Criterion, and Bayesian Information Criterion diagnostic statistics 
to identify the best model for predicting dynamic equilibrium in the Olentangy Basin.     

1.5.1 Logistic Regression 
Logistic regression is a modification of linear regression by a non-linear transformation.  
The dependent variable in logistic regression is dichotomous (i.e. in dynamic equilibrium 
or not in dynamic equilibrium) and classified as a binary number (i.e. 0 or 1).  The model 
utilizes a logistic distribution to estimate a score between 0 and 1.  For this study, scores 
near 0 indicated the site is in dynamic equilibrium while values near 1 indicated the site is 
likely not in dynamic equilibrium.  The general default cutoff value for distinguishing 
between the dichotomous dependent variable is 0.5; however, a user defined cutoff can be 
specified.  For this study a cutoff value of 0.5 was used.  Models with multiple variables 
may be subject to errors from correlated variables.  The co-linearity of models with 
multiple parameters was assessed using the condition number statistic.  Models with 
condition numbers >20 are considered to be negatively impacted by correlated 
independent variables and should not be used (Belsey et al., 1980).       

2.6.2 Model Selection Diagnostic Statistics 
To guide selection of the best model three diagnostic statistics were evaluated including: 
1) Mallow’s Cp, 2) Akaike’s Information Criterion (AIC), and 3) Bayesian Information 
Criterion (BIC).  Mallow’s Cp (Mallow, 1973) is a measure of the error in a model 
relative to the error in a full model.  Models which minimize Cp are better and less likely 
to be “overfit”.  AIC (Akaike, 1974) utilizes the maximum likelihood function to identify 
the strength of a model, but reduces that value based on the number of independent 
variables included in the model to keep from selecting models that are “overfit”.  BIC 
(Schwarz, 1978) is similar to AIC; however, the penalty term in the equation not only 
includes the number of independent variables used in the model, but the number of 
observations in the dataset as well.  Like the previous diagnostic statistics smaller values 
of BIC indicate better models.  
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2.0 Results  
2.1 Logistic Regression 
Results for the 1-parameter logistic regression models are provided in Table 1.  One 
variable, CSAdev, was significant at p<0.05 and two variables, FWR1.6:BKF and SR50:BKF, 
were significant at p<0.01.  The coefficient of determination (R2) values varied from 0.01 
to 0.50 and the three significant variables had the highest R2 values.  None of the non-
significant variables had 1-parameter models with R2 higher than 0.04.  As expected the 
significant variables also had the best prediction rates compared to the other variables.  
None of the non-significant variables predicted more than 59% of the sites correctly.  
This is only slightly better than a 50% prediction rate that would be expected if the sites 
were randomly assigned a dynamic equilibrium state by chance alone.  FWR1.6:BKF  was 
able to correctly classify 30 of 36 sites (83.3%) by itself.   
 

Table 1: Logistic regression statistics for 1 parameter models. 
          % Correctly 

Variable Coefficient Constant p-value R2 Predicted 
CSAdev 5.35** -1.83** 0.02 0.17 72.2 
Wdev 1.44 -0.066 0.29 0.03 55.6 
Ddev -3.31 0.38 0.26 0.03 55.6 
WDRdev -0.511 -0.02 0.51 0.01 55.6 
FWR1.6:BKF -2.39*** 4.37*** <0.01 0.50 83.3 
FWR50:BKF -0.23 0.86 0.21 0.04 58.3 
BMSRdev 0.52 -0.51 0.54 0.01 55.6 
SR1.6:BKF 1.69 -2.34 0.55 0.01 58.3 
SR50:BKF 3.55*** -7.13*** <0.01 0.26 72.2 

    1 – Sign of the coefficient is not logical. 
    * p-value <0.1; ** p-value <0.05; *** p-value <0.01 

 
The three significant variables were retained and used to generate 2 and 3-parameter 
logistic regression models.  Results are provided in Table 2.  None of the 2-parameter 
models had condition numbers that exceeded the threshold criteria of 20 and, therefore, 
none were eliminated from consideration as the best model.  The 3-parameter model just 
exceeded the criteria and, therefore, cannot be considered for selection as the best model.  
In all cases except one the multi-parameter models were better able to predict the 
dynamic equilibrium state compared to the 1-parameter models which included that 
variable.  The exception was the 2-parameter model which included FWR1.6:BKF and 
SR50:BKF which did no better than the model which included FWR1.6:BKF only. 

 
Table 2: Results for 1, 2, and 3-parameter logistic regression models. 

Variable  
1 

Variable  
2 

Variable 
3 

Coefficient  
Variable  1 

Coefficient  
Variable  2 

Coefficient  
Variable 3 Constant R2 

Percent 
Correctly 
Predicted 

Condition  
Number 

CSAdev - - 5.35** - - -1.83** 0.17 72.2 - 
FWR1.6:BKF - - -2.39*** - - 4.37*** 0.50 83.3 - 
SD50:BKF - - 3.55*** - - -7.13*** 0.26 72.2 - 
CSAdev FWR1.6:BKF - 5.26 -2.17** - 2.55 0.56 88.9 7.0 
CSAdev SR50:BKF - 5.02* 3.40** - -8.30*** 0.36 77.8 15.2 
FWR1.6:BKF SR50:BKF - -2.25** 0.41 - 3.29 0.50 83.3 17.9 
CSAdev FWR1.6:BKF SR50:BKF 5.25 -2.05* 0.82 1.57 0.56 86.1 20.8 

* p-value <0.1; ** p-value <0.05; ***  p-value <0.01 
See Appendix A for equation used to predict logistic regression scores and an example. 
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2.2 Best Model Selection 
Diagnostic statistics including Mallow’s Cp, AIC, and BIC which are used to aid model 
selection are provided in Table 3.  Mallow’s Cp identified the 2-parameter model with 
CSAdev and FWR1.6:BKF as the best model which was slightly better than the model with 
FWR1.6:BKF by itself.  AIC also identified the model with CSAdev and FWR1.6:BKF as the 
best followed by the FWR1.6:BKF model.  BIC selected the same two models as the 
previous statistics; however, the 1-parameter model, FWR1.6:BKF, ranked slightly better 
than the 2-parameter model. 

Table 3: Diagnostic statistics used to identify the best model.  The best result associated with a 
diagnostic statistic is highlight in bold text.   

Variables 
Mallow’s 

Cp AIC BIC 
Percent of  Sites 

Correctly Predicted 
CSAdev 5.7 44.9 48.1 72.2 
FWR1.6:BKF 2.6 28.9 32.1 83.3 
SD50:BKF 5.7 40.8 44.0 72.2 
CSAdev, FWR1.6:BKF 2.1 27.8 32. 6 88.9 
CSAdev, SD50:BKF 6.0 37.9 42.7 77.8 
FWR1.6:BKF, SD50:BKF 4.5 30.8 35.6 83.3 
CSAdev, FWR1.6:BKF, SD50:BKF  4.0 29.8 36.1 86.1 

 
3.0 Discussion and Summary 
The 2-parameter model with CSAdev and FWR1.6:BKF correctly classified 32 of the 36 sites 
into the appropriate dynamic equilibrium class and is considered the best, parsimonious 
model that was evaluated.  Additional evaluation of CSAdev and FWR1.6:BKF was 
undertaken to better understand the effects of these values on the probability that a site 
will be classified as in dynamic equilibrium or out of dynamic equilibrium.  To do this 
the sites were grouped according to their predicted logistic regression scores (LRS) with 
scoring between 0.0-0.25 (Group 1), 0.26-0.74 (Group 2), and 0.75-1.00 (Group 3).  A 
multiple ANOVA was conducted to compare these groupings.  Results of the analysis are 
presented graphically in Figure 3.   
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Figure 4: Box and whisker plots of CSAdev and FWR1.6:BKF  grouped by LRS.  Letters above plots 
indicate significance level determined by multiple comparisons ANOVA.  Groups labelled with the 
different letters are significantly different (p<0.05).    
 
Group 1, sites that are highly likely to be in dynamic equilibrium, had CSAdev values with 
little deviation and the highest FWR1.6:BKF values.  This indicates that sites in dynamic 
equilibrium generally have bankfull dimensions that deviate minimally from regional 
values and have broad floodplains.  Further discussion of the role of floodplains for 
maintaining dynamic equilibrium is provided in Ward et al. (2008).  Group 3, sites that 
are most likely to not be in dynamic equilibrium, had the highest deviation in bankfull 
dimensions and the narrowest floodplains.  Group 2, sites that were not strongly classified 
in equilibrium or out of equilibrium, had intermediate values of CSAdev and FWR1.6:BKF.   
This work indicates that these two indicators may be particularly useful for to assessing 
stream dynamic equilibrium in the Olentangy River Watershed. However, further testing 
of this approach and the prediction equation is needed to determine its’ applicability 
beyond the sites included in this study.     
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5.0 Appendix A 
Logistic regression scores (LRS) are calculated as: 

(-(Constant + Coefficient 1 * Variable 1 + Coefficient 2 * Variable 2 + Coefficient 3 * Variable 3))

1LRS = 
1+exp      (10) 

 
For example, site scores for the 2-parameter model with CSAdev and FWR1.6:BKF would be: 

(-(2.55 + 5.26 *  - 2.17 * ))
1LRS = 

1+exp dev 1.6:BKFCSA FWR                                                      (11) 


